Мотортестер В Диагностике

Motodoc III - Мотортестер в диагностике.

Обучающее видео - Motodoc III Мотортестер в диагностике.

Взяв три типа основных диагностических прибора на наш взгляд мотортестер оказался наиболее сложным в использовании, изучив этот прибор досканально, мы решили поделиться наработанными знаниями поделится с вами, записав для вас обучающий видео курс Motodoc III Мотортестер в диагностике. который поможет вам в освоении этого замечательного прибора.

Видео курс состоит из 5 лекций, в которых пойдет рассказ по применению USB Autoscope III и MotoDoc III. не на пальцах и разводя руками в воздухе, а на практике и реальных автомобилях с неисправностями.

Обучающее видео Motodoc III Мотортестер в диагностике. поможет вам быстро и качественно освоить Мотортестер. раскроет вам сикреты которыми пользуются мастера, о которых вы не узнаете на шиномонтажка от дяди Васи за бутылочкой пивка, вы будите знать, как снять и проанализировать тот или иной граффик полученнй Autoscope III и MotoDoc III. найти в нем дефекты в работе двигателя, причины появления а так же методику устранения этих дефектов.

Если вы являетесь счастливым обладателем мотортестера то этот видео курс Мотортестер в диагностике станет незаменимым помощником и облегчит вам дальнейшую жизнь, уменьшит финансовые затраты и увеличит ваше свободное время.

Доступ к скрытому тексту имеют только: Администраторы. VIP Пользователи

Применение мотортестера "MotoDoc II"

в диагностике отечественных автомобилей.

Внимание! Статья содержит большое количество графических файлов.

Этот материал адресован, прежде всего, начинающим диагностам, постигающим премудрости работы с мотортестером. Почему речь пойдет об автомобилях отечественного производства? На это есть две причины. Во-первых, эти машины более доступны основной массе ремонтников и хорошо изучены ими, а во-вторых, учиться на относительно редкой и дорогой иномарке – не самый лучший вариант. Я преследую цель не просто показать, как произвести то или иное измерение, а внушить мысль, что мотортестер – не что иное, как универсальный измерительный инструмент. Поняв на примере отечественных машин принципы его работы, можно использовать его при диагностике любых автомобилей.

Предполагается, что фирменную инструкцию к прибору Вы уже прочли. Прежде, чем начать разговор о методиках работы с прибором, позволю себе небольшое отступление. А именно для того, чтобы поговорить о весьма важном, на мой взгляд, аспекте работы – выборе типа синхронизации.

Что такое синхронизация?

Предположим, мы выбрали для измерений какой-либо канал. Для того чтобы «картинка» на экране монитора была стабильной, необходимо, чтобы частота развертки поля осциллограмм была кратна частоте сигнала. А для этого программе нужен какой-либо импульс привязки. Способов привязки, то есть синхронизации, в мотортестере MotoDoc II несколько. Рассмотрим их по порядку.

1. Внешняя синхронизация. В этом случае источником синхроимпульса является датчик первого цилиндра, надеваемый на высоковольтный провод. Привязка происходит по моменту искрообразования в первом цилиндре. Естественно, датчик можно установить на любой цилиндр, и привязка пойдет по нему, но тогда надо совершенно четко понимать, что отсчет начнется от момента искрообразования в этом цилиндре, и анализировать полученную осциллограмму соответствующим образом.

2. DIS. Тип синхронизации, очень похожий на предыдущий. Источник синхроимпульса – тот же самый датчик первого цилиндра. Но есть особенность. Как известно, в системах зажигания типа DIS искра в цилиндре за один рабочий цикл возникает дважды: на такте сжатия и на такте выпуска (так называемая холостая искра). Чтобы временная привязка происходила корректно, программа игнорирует каждый второй импульс с датчика.

Два рассмотренных типа синхронизации я бы условно отнес к первой группе, вследствие их сходства и использования одного и того же датчика. Во вторую группу можно выделить два следующих типа.

3. Внутренняя синхронизация. При использовании этого типа никаких синхроимпульсов извне не поступает. Программа просто «рисует» в поле осциллограмм сигналы выбранных каналов. При этом кадры осциллограммы записываются в ОЗУ компьютера, и их возможное количество ограничено свободным объемом оперативной памяти. Так как время доступа к ОЗУ относительно мало, то в этом режиме программа позволяет записывать быстро изменяющиеся сигналы.

4. Самописец. Данный тип синхронизации аналогичен предыдущему, с той лишь разницей, что кадры записываются на жесткий диск компьютера. Время доступа к жесткому диску намного больше, чем к ОЗУ, вследствие чего достоверно фиксируются только медленно протекающие процессы. Зато количество записанных кадров ограничено только объемом жесткого диска и практически неисчерпаемо. Например, можно записывать интересующий нас сигнал несколько часов, что очень удобно при поиске «плавающего» дефекта.

Эти два типа я для простоты понимания называю «магнитофон». На самом деле, при включении внутренней синхронизации или самописца мотортестер работает как старый добрый магнитофон: просто записывает то, что нас интересует, а потом дает «послушать».

«Симбиоз» первой и второй групп дают нам следующий тип синхронизации.

5. Автоматическая синхронизация. При выборе этого типа программа сочетает в себе внешнюю и внутреннюю синхронизацию. Когда поступает сигнал с датчика первого цилиндра, привязка осуществляется по нему. Если же сигнал отсутствует, то включается «магнитофон» - внутренняя синхронизация. Это бывает удобно в том случае, если, например, дефектные высоковольтные провода не позволяют нормально синхронизироваться по искре первого цилиндра.

Следующие три типа образуют последнюю группу, которую я бы условно назвал «синхронизация по каналу».

6. Синхронизация по импульсу. Источником служит сигнал какого-либо измерительного канала. Например, можно подключить осциллографический щуп к датчику положения распредвала и привязаться к нему. Сигнал этого датчика представляет собой прямоугольные импульсы. Программа позволяет осуществлять временную привязку, как к переднему, так и к заднему фронту импульса. Это можно выбрать при настройке режима синхронизации. Также можно выбрать и уровень, на котором будет производиться захват импульса, с помощью полозка, расположенного справа от поля осциллограмм. Частным случаем синхронизации по импульсу является синхронизация по датчику положения коленчатого вала (ДПКВ).

7. Синхронизация по ДПКВ. Программа дает нам замечательную возможность осуществить временную привязку аналогично тому, как это делает ЭБУ. Для этого нужно подключить осциллографический щуп к ДПКВ. Причем по умолчанию выбран задающий диск типа 60-2, применяемый как на отечественных двигателях, так и на многих двигателях иномарок.

8. И еще один тип синхронизации по каналу – ВМТ (верхняя мертвая точка). В качестве источника синхроимпульса используется датчик давления, который заворачивается вместо одной из свечей. Снимаемая с него осциллограмма имеет максимум, соответствующий ВМТ цилиндра. Строго говоря, этот максимум и ВМТ не совпадают, но расхождение не существенно при решении задач диагностики.

К выбору типа синхронизации нужно подходить с долей творчества. Следует также уяснить, что тот сигнал, который мы хотим посмотреть, одновременно может служить и сигналом синхронизации. Возвращаясь к примеру с датчиком положения распредвала. Мы можем наблюдать осциллограмму сигнала датчика, используя этот же сигнал как источник синхронизации. Обратите внимание на то, что при синхронизации по каналу необходимо, чтобы этот канал был включен.

Параметры режимов синхронизации можно задавать вручную по своему усмотрению. Жестко заданы лишь параметры внутренней, внешней и автоматической синхронизаций.

А теперь подробнее остановимся на применении комплекса в диагностике двигателей. Рассмотрим несколько примеров использования его возможностей при работе с двигателем ВАЗ.

Вторичное напряжение.

Состояние высоковольтной части системы зажигания, как известно, очень сильно влияет на качество работы двигателя. Проверить состояние ее компонентов можно по осциллограмме вторичного напряжения. Для этого измерительные датчики подключаются к двигателю в последовательности, изложенной в фирменной инструкции.

Методика анализа осциллограммы вторичного напряжения выходит за рамки этой статьи. Замечу только следующее. Самым информативным с точки зрения диагностики режимом является переход от холостого хода к дросселированию. Почему? Потому, что при открытии дроссельной заслонки наполнение цилиндров воздухом увеличивается, соответственно возрастает пробивное напряжение. И большая часть дефектов «вылезает наружу».

При работе с вторичным напряжением логичнее всего использовать внешнюю синхронизацию. Но если имеются дефекты, то вполне возможен ее срыв. Поэтому очень логично поступать так: воспользоваться внутренней синхронизацией и «записать» момент резкого нажатия на «газ» с режима холосто хода. Практически все дефекты вторичной цепи зажигания не замедлят себя проявить.

Приведу пример. На фото изображено подключение мотортестера в случае системы DIS и выбран соответствующий тип синхронизации:

мотортестер в диагностике

Результаты измерений:

мотортестер в диагностике

Сразу бросается в глаза уменьшенное время горения искры в 1 и 4 цилиндрах и отсутствие затухающих колебаний после того, как искра погасла. Это типичные признаки короткозамкнутых витков в катушке 1-4. Катушка 2-3 исправна. Модуль нуждается в замене.

quantex.ru.

Это самый главный датчик в системе впрыска, по нему осуществляется синхронизация работы ЭБУ. Подключать к нему мотортестер приходится достаточно часто, поэтому я рекомендую для удобства изготовить из разъема и старого датчика простейщий переходник.

Как уже говорилось, этот датчик может служить источником синхронизации и для мотортестера. Итак, воспользуемся переходником для подключения ДПКВ к осциллографическому каналу, включаем этот канал и выбираем тип синхронизации «по ДПКВ». В поле осциллограмм появится такая картинка:

мотортестер в диагностике

Обратите внимание на цифры слева на оси осциллограммы. Это значения напряжений, вычисленные программой: максимальное, среднее и минимальное. По их значению, при наличии соответствующего опыта, легко сделать вывод о «здоровье» ДПКВ. Короткозамкнутые витки, к примеру, приводят к снижению амплитуды сигнала ДПКВ и искажениям его формы.

Поднимем обороты двигателя до 3000. Осциллограмма и напряжение изменились:

мотортестер в диагностике

Следует отметить, что задающий диск на подопытном двигателе, как говорят, «бьет». Это видно по изменяющейся амплитуде сигнала.

Еще один интересный момент. Предположим, есть двигатель, по какой-то причине отказывающийся заводиться. Воспользуемся внутренней синхронизацией для записи на «магнитофон» сигнала ДПКВ. Прокрутка двигателя с отключенными форсунками выглядит примерно так:

мотортестер в диагностике

Этот пример не является показательным при диагностике отечественных двигателей, но в случае иномарок бывает очень полезным. На некоторых старых иномарках задающим датчиком может оказаться датчик Холла, вырабатывающий прямоугольные импульсы. ВАЗовский двигатель использует датчик Холла в качестве датчика положения распределительного вала (ДПРВ). Рассмотрим его подробнее, одновременно воображая, что перед нами старый Опель.

Итак, я не знаю, работает ли этот датчик и поступает ли с него сигнал в ЭБУ. Для того чтоб решить эту проблему, выбираем один из «магнитофонов», например, самописец. Находим сигнальный вывод датчика и подключаемся к нему. Запускаем измерение. Ага, там что-то есть:

мотортестер в диагностике

И оно представляет собой прямоугольные импульсы амплитудой 12.3 вольта.

Попробуем разглядеть подробнее. Выбираем «синхронизацию по каналу», предварительно задав в настройках «пропуск двух импульсов» и «по заднему фронту». Запускаем съем и двигаем полозок уровня захвата. Вот оно:

мотортестер в диагностике

Прямоугольные импульсы, амплитуда 12.7, на вершинах всплески напряжения от закрывающихся форсунок. Обратим внимание на едва заметные вертикальные линии по заднему фронту импульсов. Это программа отмечает моменты синхронизации. Они особенно показательны при внешней синхронизации, но не будем забегать вперед.

Проведем еще одно интересное наблюдение. Подключим одновременно ДПКВ и ДПРВ, выберем синхронизацию от ДПКВ и полюбуемся получившейся картинкой:

мотортестер в диагностике

Интересно, правда? Видно, что коленвал вращается в два раза быстрее распредвала, и видно, что пропуск зубьев на задающем диске совпадает с началом отрицательного импульса ДПРВ.

Как ни странно прозвучит, этот датчик тоже можно проверить мотортестером. Для удобства работы можно тоже изготовить переходник. Одна из методик проверки описана здесь. Она сводится к снятию в режиме самописца осциллограммы сигнала датчика при перегазовке. Вторая методика менее известна и, пожалуй, менее достоверна, но для опыта следует знать и о ней.

Заключается эта методика в снятии осциллограммы переходного процесса на выходе ДМРВ в момент его включения. Так как этот процесс достаточно скоротечен, выбираем в качестве «магнитофона» внутреннюю синхронизацию. Подключаем осциллографический щуп к выходу ДМРВ и включаем зажигание. Картинка исправного датчика выглядит так:

мотортестер в диагностике

Видно, что всплеск напряжения в момент включения достигает 3.11 вольт, и переходный процесс очень короткий. А теперь взглянем на осциллограмму неисправного датчика:

мотортестер в диагностике

Всплеск 2.9, переходный процесс затянут, и напряжение в установившемся режиме 1.02 вольта. Ну, еще и какие-то шумы в самом начале. Добавлю, что это еще не самый экстремальный вариант. Попадаются неисправные датчики, у которых переходный процесс представляет собой затухающее колебание.

Проверку этого датчика можно произвести в режиме самописца, открывая дроссельную заслонку. Напряжение на выходе должно нарастать плавно, без скачков и шумов. Осциллограммы исправных и неисправных датчиков уже сняты Владимиром Селиверстовым aka Володюшка и находятся здесь . Там же Вы найдете очень много примеров осциллограмм, в том числе и вторичного напряжения.

Датчик температуры проверять мотортестером нерационально. Это делается сканером либо простым мультиметром.

MotoDoc II предоставляет прекрасную возможность наблюдать напряжение и ток форсунок. Он имеет в своем составе соответствующий шнур для соединения со жгутом форсунок двигателя ВАЗ. В качестве синхронизации можно выбрать либо внешнюю, либо синхронизацию по ДПКВ. Теоретически можно вообще подключиться к ДПРВ и привязаться к нему. Это я говорю для понимания возможностей применения прибора. Однако привязка к ДПРВ не несет практического смысла. Самым простым способом было бы выбрать внешнюю синхронизацию, но, руководствуясь целью придать осциллограмме максимум информативности, я снял напряжение форсунок, воспользовавшись синхронизацией по ДПКВ

мотортестер в диагностике

Рассмотрим ее внимательнее. Во-первых, установив измерительные линейки программы соответствующим образом, можно померить время впрыска. Во-вторых, нужно обратить внимание на выбросы напряжения в момент закрытия форсунок. Они возникают потому, что обмотка форсунки представляет собой индуктивность. В нашем примере все выбросы примерно одного уровня – около 53 вольт. Если же обмотка форсунки имеет короткозамкнутые витки, то скачок напряжения будет намного ниже. Во всяком случае, будет отличаться от остальных. Ну, и в-третьих, растянем картинку до такой степени, чтобы было видно форму спадающего напряжения после всплеска:

мотортестер в диагностике

Горб на осциллограмме возникает из-за движения клапана форсунки. Он обязательно должен быть. Отсутствие горба говорит о заклинившем или подвисающем клапане.

Так же интересна и осциллограмма тока форсунок:

мотортестер в диагностике

Наличие тока говорит как минимум об отсутствии внутреннего обрыва обмотки форсунки. Внимание! Выбросы тока на заднем фронте обусловлены конструкцией аппаратной части прибора и смысловой нагрузки не несут.

А вот посмотреть форму осциллограммы поближе смысл есть:

мотортестер в диагностике

Видно, что ток нарастает плавно, как и в любой индуктивной катушке. Но есть впадина, обусловленная опять-таки движением клапана форсунки. И по наличию или отсутствию этой впадины тоже можно сделать вывод о подвижности клапана.

Анализ осциллограммы давления в цилиндре.

Это, пожалуй, самый важный момент, и на нем следует остановиться подробнее.

Итак, выкручиваем свечу, устанавливаем вместо нее датчик давления, подключаем его к прибору и выполняем коррекцию нуля. В качестве временной привязки разумнее всего выбрать внешнюю синхронизацию от высоковольтного провода этого же цилиндра, установленного на разрядник. Чуть позже мы так и сделаем, а пока привяжемся к датчику положения коленвала. На экране возникнет такая картинка:

мотортестер в диагностике

Она интересна чисто с теоретической точки зрения. Видно, как соотносятся ВМТ цилиндра и сигнал с ДПКВ. Если рассмотреть растянутую осциллограмму, то можно разглядеть девятнадцатый зуб, который соответствует верхней мертвой точке первого цилиндра:

мотортестер в диагностике

Можно установить измерительные линейки и получить те самые 114 градусов, которые составляют разницу между ВМТ и пропущенными зубьями на задающем диске. Таким образом, смещение венца задающего диска или разбитая шпонка последнего «вычисляются», как говорят, на счет раз.

На практике обычно выбирают режим внешней синхронизации и анализируют полученную осциллограмму. Рассмотрим ее:

мотортестер в диагностике

Нарастание давления в начале соответствует движению поршня вверх. Максимум давления можно принять как ВМТ цилиндра. Программа подсказывает нам, что значение давления на пике было 5,40 атмосферы. Замечу, что это около нормы. Вообще-то анализировать это значение лучше по собственному опыту. В частности, подсос воздуха в задроссельное пространство вызывает повышение этого значения, иногда до 8-9 атмосфер.

Далее, на картинке указана та часть, которая соответствует выпуску выхлопных газов. С помощью измерительной линейки можно убедиться, что противодавление выпускной системы на подопытном автомобиле не превышает 0.1 атм, что опять-таки является нормой. Зона, отмеченная как «впуск», соответствует открытому впускному клапану и движущемуся вниз поршню. Значение давления в этот момент – ни что иное, как разрежение во впускном коллекторе. Оно составляет около 0.65 атм, что тоже абсолютно нормально. Повышенное давление (то же, что и низкий вакуум) заставляет искать причину дефекта, чаще всего подсоса воздуха. Вообще подсос во впускной коллектор выявляется по сочетанию двух признаков: высокого давления в ВМТ и низкого вакуума.

Еще один важный момент – фазы ГРМ. Анализ осциллограммы позволяет сделать однозначный вывод о правильности установки фаз. Снимите и сохраните в качестве образца осциллограммы давления в цилиндре тех двигателей, с которыми вам чаще всего приходится работать, и вы всегда сможете сравнить исследуемую осциллограмму с эталонной. Внимательно изучите их, поищите закономерности. Это очень обогатит Ваш опыт. Посмотреть характерные неисправности ГРМ можно на сайте производителя мотортестера MotoDoc II.

Еще одна интересная осциллограмма – давление в цилиндре на повышенных оборотах

мотортестер в диагностике

Она подтверждает предположение об отсутствии «забитости» выпускной системы. Дело в том, что противодавление выхлопных газов при разрушении катализатора, к примеру, может составить несколько атмосфер.

Следующий момент. Так как привязка происходит по моменту искрообразования в исследуемом цилиндре, который отмечается на картинке серой вертикальной линией, то очень просто, наложив линейки соответствующим образом, увидеть угол опережения зажигания. А можно просто выбрать закладку «УОЗ» и видеть цифровое значение, рассчитанное программой автоматически. Можно настроить центробежный регулятор трамблера, воспользовавшись графиком зависимости УОЗ от оборотов. Такую возможность мотортестер тоже дает.

Анализ работы клапанов.

Исходным измерением является опять-таки осциллограмма давления в цилиндре, снятая в режиме внешней синхронизации. Если проанализировать зависимость давления в ВМТ от оборотов, предоставляемую программой, то можно сделать выводы о состоянии клапанов. Методика была разработана Михаилом Сорокиным aka sharoka, и выглядит следующим образом:

мотортестер в диагностике

Есть еще несколько интересных и информативных графиков. Скажем, осциллограммы стартерного тока, тока бензонасоса или другого потребителя, давления топлива. Да-да, датчик давления можно подключить к топливной рампе и снимать «картинку» в режиме самописца. Но это уже чисто в образовательных, а не в диагностических целях. Хотя как знать…

Я надеюсь, что мотортестер MotoDoc II станет Вашим незаменимым помощником в нелегкой и творческой работе автодиагноста.

Приложение: Графические файлы этой статьи в большом разрешении .

Мотор-тестеры и осциллографы

Страницы: 1 2   Ctrl →

Мотор тестеры и осциллографы для полноценной диагностики двигателя

Мотор тестеры выполняют диагностику различных систем автомобиля, в первую очередь двигателя, коробки передач и других систем непосредственно (в отличие от автосканеров). То естьмотор тестер напрямую подключается к диагностируемой системе, на примере двигателя это подключение к электрической цепи при помощи емкостных датчиков. Подключенный мотор тестер выполняет функцию полноценного осциллографа — снимает осциллограммы типа электронный блок управления-управляемое устройство, снимает осциллограммы цепей зажигания, тестирует двигатель в режимах мотор тестера, снимает показатели температуры, давления, разрежения. Иногда мотор-тестеры могут по совместительству служить мультиметром, который позволяет измерять напряжение тока, сопротивление тока и др. также может имитировать сигналы датчиков.

Основным преимуществом мотор тестера перед осциллографом является то что он способен работать не только в режиме измерения и регистрации электрических сигналов, проходящих через электрическую цепь к которой подключен мотор тестер. но и в режиме тестирования двигателя и системы зажигания: измерение компрессии, контроль работы клапанов, контроль работы цилиндров, диагностика свечей, диагностика катушки зажигания, диагностика датчиков системы зажигания и др. Мотор тестер работает автомобилями любых марок и моделей, вне зависимости от того в каком году был выпущен с конвейера автомобиль — мотор тестер имеет ограничения лишь в некоторых случаях, обусловленных техническим устройством мотора автомобиля. Мотор тестер является отличным дополнением диагностического сканера, по этому чаще всего при диагностике автомобиля и его мотора они используются совместно.

АвтомобильныйUSB осциллограф выполняет только одну функцию — снятие осциллограмм в различных режимах. Это означает что автомобильныйUSB осциллограф работает как анализатор и регистратор сигналов в низкочастотном диапазоне, позволяет регистрировать сигналы датчиков и прочие электрические сигналы автомобиля.

Любому автосервису осуществляющему полноценную и профессиональную диагностику необходим автомобильныйUSB осциллограф или мотор тестер. диагностический сканер. газоанализатор и прочее диагностическое оборудование. Купить мотор тестеры, USB осциллографы, или диагностические комплекыс вы можете по телефону указанному на сайте.

Мотор-Тестер МТ10КМ Плюс

Мотор-Тестер МТ10КМ включает полнофункциональный мотор-тестер для бензиновых (и частично дизельных) ДВС, компьютерный сканер для дизельных и бензиновых автомобилей и базу данных.

Мотор-Тестер МТ10КМ работает на основе программного обеспечения МТ10 и поддерживает диагностику режиме сканера автомобилей ВАЗ (в том числе автомобилей Lada Granta), GM-AVTOVAZ, ГАЗ, УАЗ, ИЖ, ЗАЗ, СЕАЗ со всеми существующими ЭСУД, включая системы ABS, SRS (подушка безопасности), климат-контроль, иммобилизатор, электроусилитель руля, ПАЗ, ЗИЛ (Bosch EDC7UC31), МАЗ (Bosch EDC7UC31, Элара 50.3763 Е3), Камаз (Bosch MS6.1), BAW, CHEVROLET, CHERY, CITROEN, DAEWOO, FIAT, FORD, GREAT WALL, HYUNDAI, KIA, MAZDA, NISSAN, OPEL, PEUGEOT, RENAULT, SUZUKI, TOYOTA, BYD, HAFEI, автомобилей группы VAG, автомобилей, поддерживающих диагностику OBD-II.

Коды доступа для работы в режиме сканера приобретаются дополнительно или в составе поставки Мотор Тестер МТ10КМ Плюс.

Комплекс Мотор-Тестер МТ10КМ работает на основе программного обеспечения МТ10 с блоком автомобильной диагностики АМД-4АКМ. В состав Мотор-Тестера МТ10КМ также входит широкий ряд аксессуаров: датчики, клещи, стробоскоп и др. а также диагностические кабели.

Программа МТ10 постоянно развивается, выпускаются новые версии с большими возможностями. Пользователи программы всегда могут бесплатно загрузить с сайта самую последнюю версию программы. Также можно бесплатно загрузить демо-версию программы МТ10, чтобы подробно ознакомиться с ее возможностями.

Комплекс Мотор-Тестер МТ10КМ состоит из трех функциональных подсистем:

Сканер позволяет:

- автоматически определять тип ЭБУ (только для некоторых производителей).

- просматривать в динамике параметры ЭБУ и устройств ЭСУД в цифровом и в графическом виде, до 16 параметров и более в режиме «список».

- вести долговременную запись информации.

- получать сведения о кодах неисправностей ЭБУ, паспортах ЭБУ, двигателя, калибровках, таблицах коэффициентов топливоподачи и других таблиц обучения.

- управлять исполнительными механизмами двигателя.

- проводить испытания для определения механических потерь, скорости прогрева двигателя, баланса индикаторной мощности, цилиндрового баланса, неравномерности ХХ, производительности датчика кислорода, проводить тест генератора, запуска, разгона и динамики разгона, прокрутки.

МОТОР-ТЕСТЕР

Мотор-Тестер позволяет производить углубленную диагностику систем зажигания (классических, электронных, микропроцессорных) с механическим либо статическим распределением энергии, электронных систем управления двигателем как отечественного, так и импортного производства. Мотор-Тестер является универсальным средством, позволяющим проводить диагностику большинства существующих типов автомобилей с бензиновыми (и частично дизельными) ДВС. Диагностируемые системы:

Система зажигания

- определение состояния свечей и свечных проводов (нагары, обрывы, пробои);

- определение режимов работы и неисправностей катушки зажигания (межвитковые замыкания, правильность подключения, пробои).

- диагностика коммутатора и датчика Холла;

- просмотр характеристики работы центробежного регулятора (график зависимости УОЗ от оборотов);

- определение УОЗ (без стробоскопа или с ним).

Система топливоподачи бензиновых двигателей

- электрическая проверка топливных форсунок (межвитковые замыкания обмоток, длительность фазы впрыска);

- проверка работы датчиков (температуры, положения дроссельной заслонки, датчика кислорода, ДМРВ и т. д.);

- проверка исполнит. механизмов (регулятор ХХ и др.);

- состав выхлопных газов (с внешним газоанализатором);

- определение вклада цилиндров путем отключения зажигания.

Система топливоподачи дизельных двигателей

- диагностика состояния ТНВД и форсунок по характеру кривой пульсаций давления в топливных трубках.

- определение углов впрыска (со стробоском или без).

- просмотр характеристики работы центробежного регулятора (график зависимости угла впрыска от оборотов).

- электрич. проверка каналов управления топливными форсунками.

Система предпускового разогрева дизельных двигателей

- диагностика цепей свечей накала или запальной свечи.

Система газораспределения

- оценка относительной компрессии по цилиндрам в режиме стартерной прокрутки;

-измерение компрессии в динамике и в режиме прокрутки;

- определение правильности установки ремня ГРМ;

- контроль работы клапанов.

Система питания и зарядки

- проверка работы генератора и системы зарядки аккумулятора (вых. напряжение и ток генератора с определением неисправностей выпрямительных диодов, реле-регулятора, зависания щеток и т.д.).

Дополнительные возможности

- режим многоканального осциллографа с синхронизациией от любого из каналов или от спец. каналов синхронизации (ДПКВ, ДВМТ, индуктивных клещей в качестве датчика первого цилиндра) или самописца. Отображение до 8 каналов на экране с возможностью записи.

БАЗА ДАННЫХ

База данных позволяет: вести учет клиентов; учет выполненных работ; печатать отчетоы о работе и найденных неисправностях.

Конструкция комплекса позволяет использовать его как в стационарном, так и в мобильном варианте, в этом случае питание комплекса возможно от аккумулятора тестируемого автомобиля.

Диагностируемые системы.

Комплекс позволяет праводить диагностику в режиме сканера автомобилей ВАЗ (в том числе автомобилей Lada Granta), GM-AVTOVAZ, ГАЗ, МАЗ, Камаз со всеми существующими ЭСУД, включая системы ABS, SRS (подушка безопасности), климат-контроль, иммобилизатор, электроусилитель руля, УАЗ, ИЖ, ЗАЗ, ПАЗ, ЗИЛ, СЕАЗ, DAEWOO, KIA, FORD, RENAULT, FIAT, PEUGEOT, OPEL, HYUNDAI, CHEVROLET, CITROEN, BAW, CHERY, NISSAN/INFINITI, MAZDA, TOYOTA/LEXUS, SUZUKI, GREAT WALL, MAZDA, TOYOTA/LEXUS, NISSAN / INFINITI, SUZUKI, GEELY, BYD, LIFAN, HAFEI, группы VAG (Audi, VW, Skoda, Seat), автомобилей, поддерживающих диагностику OBD-II. На сегодняшний день для диагностики доступно более 1200 различных систем:

Список диагностируемых автомобилей и систем постоянно расширяется.

Комплект поставки.

Базовый вариант поставки:

CD “НПП НТС” с ПО МТ10 и документацией

Паспорт. Источник питания АМД-4. Блок автомобильной диагностики АМД-4AКМ

Датчики высокого напряжения ДВН-2А, ДВН-4А-П, ДВН-4А-М.

Клещи синхронизации КСИ-4. Клещи токовые КТ-14. Стробоскоп СА-4

Датчик абс. давления ДТК-2

Кабели (основные):

Кабель 10-BASE-T

Кабели сигнальные: AM4-С11-Ж желтый, AM4-С21-Г голубой, AM4-С31-З зеленый, AM4-С41-К красный, AM4-С51-Ф фиолетовый

Кабель диагностический АМД4-Д13-ДИАГ

Кабель-адаптер OBDII AMД4-Д43-OBD II

Кабель-адаптер ВАЗ/GM-12 AM4-Д32-ВАЗ

Кабель-адаптер VAG-4 AM4-Д52-VAG

Кабель-адаптер ГАЗ АМ4-Д22-ГАЗ

Кабель питания АМ4-П11-АКК

Кабель первичных цепей/форсунокАМ4-С73-БЛОК

Кабель-адаптер первич цепей 4-кан/ универсальный АМ4-СА1-Б4

Кабель-адаптер первич цепей 1-кан. универсальный АМ4-СВ1-Б1

Кабель-адаптер первичных цепей ГАЗ 2-канальный АМ4-СC1-Б ГАЗ

Кабель-адаптер первич. цепей ВАЗ/сдвоен. катушки АМ4-СК1-Б2 ВАЗ

Кабель-адаптер форсунок ВАЗ АМ4-СН1-ФОРСУНКА

Кабель ДВМТ/ДПКВ АМД4-С83-ДВМТ/ДПКВ

Кабель-адаптер ДПКВ/ВАЗ АМ4-СD1-ВАЗ ДПКВ

Кабель-адаптер ДПКВ/ГАЗ АМ4-СЕ1-ГАЗ ДПКВ

Кабель-адаптер ДВМТ универсальный АМ4-СF1-ДВМТ

Кабель-адаптер ДПВК универсальный АМ4-СG1-ДПКВ

Шнур-переходник ШП-3-1,5

Шнур-переходник ШП-3-2,8

Шнур-переходник ШП-3-6,3

Шнур-переходник ШП-КГ

Комплект щупов для АМД-4А (7 шт.)

Доп. принадлежности (поставляются отдельно):

Датчики давления ДД-8Д, ДД-10М. Усилитель заряда УЗ-ПМ.

Применение мотортестера "MotoDoc ii" в диагностике отечественных автомобилей

Применение мотортестера "MotoDoc II"

в диагностике отечественных автомобилей.

©А. Пахомов 2007 (aka IS_18, Ижевск)

Внимание! Статья содержит большое количество графических файлов.

Этот материал адресован, прежде всего, начинающим диагностам, постигающим премудрости работы с мотортестером. Почему речь пойдет об автомобилях отечественного производства? На это есть две причины. Во-первых, эти машины более доступны основной массе ремонтников и хорошо изучены ими, а во-вторых, учиться на относительно редкой и дорогой иномарке – не самый лучший вариант. Я преследую цель не просто показать, как произвести то или иное измерение, а внушить мысль, что мотортестер – не что иное, как универсальный измерительный инструмент. Поняв на примере отечественных машин принципы его работы, можно использовать его при диагностике любых автомобилей.

Предполагается, что фирменную инструкцию к прибору Вы уже прочли. Прежде, чем начать разговор о методиках работы с прибором, позволю себе небольшое отступление. А именно для того, чтобы поговорить о весьма важном, на мой взгляд, аспекте работы – выборе типа синхронизации.

Что такое синхронизация?

Предположим, мы выбрали для измерений какой-либо канал. Для того чтобы «картинка» на экране монитора была стабильной, необходимо, чтобы частота развертки поля осциллограмм была кратна частоте сигнала. А для этого программе нужен какой-либо импульс привязки. Способов привязки, то есть синхронизации, в мотортестере MotoDoc II несколько. Рассмотрим их по порядку.

1. Внешняя синхронизация. В этом случае источником синхроимпульса является датчик первого цилиндра, надеваемый на высоковольтный провод. Привязка происходит по моменту искрообразования в первом цилиндре. Естественно, датчик можно установить на любой цилиндр, и привязка пойдет по нему, но тогда надо совершенно четко понимать, что отсчет начнется от момента искрообразования в этом цилиндре, и анализировать полученную осциллограмму соответствующим образом.

2. DIS. Тип синхронизации, очень похожий на предыдущий. Источник синхроимпульса – тот же самый датчик первого цилиндра. Но есть особенность. Как известно, в системах зажигания типа DIS искра в цилиндре за один рабочий цикл возникает дважды: на такте сжатия и на такте выпуска (так называемая холостая искра). Чтобы временная привязка происходила корректно, программа игнорирует каждый второй импульс с датчика.

Два рассмотренных типа синхронизации я бы условно отнес к первой группе, вследствие их сходства и использования одного и того же датчика. Во вторую группу можно выделить два следующих типа.

3. Внутренняя синхронизация. При использовании этого типа никаких синхроимпульсов извне не поступает. Программа просто «рисует» в поле осциллограмм сигналы выбранных каналов. При этом кадры осциллограммы записываются в ОЗУ компьютера, и их возможное количество ограничено свободным объемом оперативной памяти. Так как время доступа к ОЗУ относительно мало, то в этом режиме программа позволяет записывать быстро изменяющиеся сигналы.

4. Самописец. Данный тип синхронизации аналогичен предыдущему, с той лишь разницей, что кадры записываются на жесткий диск компьютера. Время доступа к жесткому диску намного больше, чем к ОЗУ, вследствие чего достоверно фиксируются только медленно протекающие процессы. Зато количество записанных кадров ограничено только объемом жесткого диска и практически неисчерпаемо. Например, можно записывать интересующий нас сигнал несколько часов, что очень удобно при поиске «плавающего» дефекта.

Эти два типа я для простоты понимания называю «магнитофон». На самом деле, при включении внутренней синхронизации или самописца мотортестер работает как старый добрый магнитофон: просто записывает то, что нас интересует, а потом дает «послушать».

«Симбиоз» первой и второй групп дают нам следующий тип синхронизации.

5. Автоматическая синхронизация. При выборе этого типа программа сочетает в себе внешнюю и внутреннюю синхронизацию. Когда поступает сигнал с датчика первого цилиндра, привязка осуществляется по нему. Если же сигнал отсутствует, то включается «магнитофон» - внутренняя синхронизация. Это бывает удобно в том случае, если, например, дефектные высоковольтные провода не позволяют нормально синхронизироваться по искре первого цилиндра.

Следующие три типа образуют последнюю группу, которую я бы условно назвал «синхронизация по каналу».

6. Синхронизация по импульсу. Источником служит сигнал какого-либо измерительного канала. Например, можно подключить осциллографический щуп к датчику положения распредвала и привязаться к нему. Сигнал этого датчика представляет собой прямоугольные импульсы. Программа позволяет осуществлять временную привязку, как к переднему, так и к заднему фронту импульса. Это можно выбрать при настройке режима синхронизации. Также можно выбрать и уровень, на котором будет производиться захват импульса, с помощью полозка, расположенного справа от поля осциллограмм. Частным случаем синхронизации по импульсу является синхронизация по датчику положения коленчатого вала (ДПКВ).

7. Синхронизация по ДПКВ. Программа дает нам замечательную возможность осуществить временную привязку аналогично тому, как это делает ЭБУ. Для этого нужно подключить осциллографический щуп к ДПКВ. Причем по умолчанию выбран задающий диск типа 60-2, применяемый как на отечественных двигателях, так и на многих двигателях иномарок.

8. И еще один тип синхронизации по каналу – ВМТ (верхняя мертвая точка). В качестве источника синхроимпульса используется датчик давления, который заворачивается вместо одной из свечей. Снимаемая с него осциллограмма имеет максимум, соответствующий ВМТ цилиндра. Строго говоря, этот максимум и ВМТ не совпадают, но расхождение не существенно при решении задач диагностики.

К выбору типа синхронизации нужно подходить с долей творчества. Следует также уяснить, что тот сигнал, который мы хотим посмотреть, одновременно может служить и сигналом синхронизации. Возвращаясь к примеру с датчиком положения распредвала. Мы можем наблюдать осциллограмму сигнала датчика, используя этот же сигнал как источник синхронизации. Обратите внимание на то, что при синхронизации по каналу необходимо, чтобы этот канал был включен.

Параметры режимов синхронизации можно задавать вручную по своему усмотрению. Жестко заданы лишь параметры внутренней, внешней и автоматической синхронизаций.

А теперь подробнее остановимся на применении комплекса в диагностике двигателей. Рассмотрим несколько примеров использования его возможностей при работе с двигателем ВАЗ.

Вторичное напряжение.

Состояние высоковольтной части системы зажигания, как известно, очень сильно влияет на качество работы двигателя. Проверить состояние ее компонентов можно по осциллограмме вторичного напряжения. Для этого измерительные датчики подключаются к двигателю в последовательности, изложенной в фирменной инструкции.

Методика анализа осциллограммы вторичного напряжения выходит за рамки этой статьи. Замечу только следующее. Самым информативным с точки зрения диагностики режимом является переход от холостого хода к дросселированию. Почему? Потому, что при открытии дроссельной заслонки наполнение цилиндров воздухом увеличивается, соответственно возрастает пробивное напряжение. И большая часть дефектов «вылезает наружу».

При работе с вторичным напряжением логичнее всего использовать внешнюю синхронизацию. Но если имеются дефекты, то вполне возможен ее срыв. Поэтому очень логично поступать так: воспользоваться внутренней синхронизацией и «записать» момент резкого нажатия на «газ» с режима холосто хода. Практически все дефекты вторичной цепи зажигания не замедлят себя проявить.

Приведу пример. На фото изображено подключение мотортестера в случае системы DIS и выбран соответствующий тип синхронизации:

Результаты измерений:

Сразу бросается в глаза уменьшенное время горения искры в 1 и 4 цилиндрах и отсутствие затухающих колебаний после того, как искра погасла. Это типичные признаки короткозамкнутых витков в катушке 1-4. Катушка 2-3 исправна. Модуль нуждается в замене.

quantex.ru.

Это самый главный датчик в системе впрыска, по нему осуществляется синхронизация работы ЭБУ. Подключать к нему мотортестер приходится достаточно часто, поэтому я рекомендую для удобства изготовить из разъема и старого датчика переходник, например, как на фото.

Как уже говорилось, этот датчик может служить источником синхронизации и для мотортестера. Итак, воспользуемся переходником для подключения ДПКВ к осциллографическому каналу, включаем этот канал и выбираем тип синхронизации «по ДПКВ». В поле осциллограмм появится такая картинка:

Обратите внимание на цифры слева на оси осциллограммы. Это значения напряжений, вычисленные программой: максимальное, среднее и минимальное. По их значению, при наличии соответствующего опыта, легко сделать вывод о «здоровье» ДПКВ. Короткозамкнутые витки, к примеру, приводят к снижению амплитуды сигнала ДПКВ и искажениям его формы.

Поднимем обороты двигателя до 3000. Осциллограмма и напряжение изменились:

Следует отметить, что задающий диск на подопытном двигателе, как говорят, «бьет». Это видно по изменяющейся амплитуде сигнала.

Еще один интересный момент. Предположим, есть двигатель, по какой-то причине отказывающийся заводиться. Воспользуемся внутренней синхронизацией для записи на «магнитофон» сигнала ДПКВ. Прокрутка двигателя с отключенными форсунками выглядит примерно так:

Этот пример не является показательным при диагностике отечественных двигателей, но в случае иномарок бывает очень полезным. На некоторых старых иномарках задающим датчиком может оказаться датчик Холла, вырабатывающий прямоугольные импульсы. ВАЗовский двигатель использует датчик Холла в качестве датчика положения распределительного вала (ДПРВ). Рассмотрим его подробнее, одновременно воображая, что перед нами старый Опель.

Итак, я не знаю, работает ли этот датчик и поступает ли с него сигнал в ЭБУ. Для того чтоб решить эту проблему, выбираем один из «магнитофонов», например, самописец. Находим сигнальный вывод датчика и подключаемся к нему. Запускаем измерение. Ага, там что-то есть:

И оно представляет собой прямоугольные импульсы амплитудой 12.3 вольта.

Попробуем разглядеть подробнее. Выбираем «синхронизацию по каналу», предварительно задав в настройках «пропуск двух импульсов» и «по заднему фронту». Запускаем съем и двигаем полозок уровня захвата. Вот оно:

Прямоугольные импульсы, амплитуда 12.7, на вершинах всплески напряжения от закрывающихся форсунок. Обратим внимание на едва заметные вертикальные линии по заднему фронту импульсов. Это программа отмечает моменты синхронизации. Они особенно показательны при внешней синхронизации, но не будем забегать вперед.

Проведем еще одно интересное наблюдение. Подключим одновременно ДПКВ и ДПРВ, выберем синхронизацию от ДПКВ и полюбуемся получившейся картинкой:

Интересно, правда? Видно, что коленвал вращается в два раза быстрее распредвала, и видно, что пропуск зубьев на задающем диске совпадает с началом отрицательного импульса ДПРВ.

Работаем мотортестером

Описание:

http://pakhomov-school.ru/diagnostika...

Ролик представляет собой фрагмент ступени "ЭКСПЕРТ" видеокурса "Диагностика современных бензиновых двигателей: три ступени к успеху". Обучение диагностике - основная задача нашей Школы, и данное видео показывает, как можно проверить генератор и стартер с помощью мотортестера.

Оставьте комментарий!

Комментарий будет опубликован после проверки

Выберите человечка с поднятой рукой!

При нажатии на картинку, Ваш комментарий будет добавлен.